

SINGLE-SUPPLY OPERATIONAL AMPLIFIERS MicroAmplifier ${ }^{\text {m }}$ Series

FEATURES

- MICRO-SIZE, MINIATURE PACKAGES

Single: SOT-23-5, SO-8
Dual: MSOP-8, SO-8
Quad: SSOP-16

- LOW OFFSET VOLTAGE: $750 \mu \mathrm{~V}$ max
- WIDE SUPPLY RANGE

Single Supply: +2.7 V to +36 V
Dual Supply: $\pm 1.35 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$

- LOW QUIESCENT CURRENT: $350 \mu \mathrm{~A}$ max
- WIDE BANDWIDTH: 1.5MHz

APPLICATIONS

- BATTERY POWERED INSTRUMENTS
- PORTABLE DEVICES
- PCMCIA CARDS
- MEDICAL INSTRUMENTS
- TEST EQUIPMENT

SOT-23-5

DESCRIPTION

The OPA237 op amp family is one of Burr-Brown's MicroAmplifier ${ }^{\text {™ }}$ series of miniature products. In addition to small size, these devices feature low offset voltage, low quiescent current, low bias current, and a wide supply range. Single, dual, and quad versions have identical specifications for maximum design flexibility. They are ideal for single supply, battery operated, and space-limited applications, such as PCMCIA cards and other portable instruments.
OPA237 series op amps can operate from either single or dual supplies. When operated from a single supply, the input common-mode range extends below ground and the output can swing to within 10 mV of ground. Dual and quad designs feature completely independent circuitry for lowest crosstalk and freedom from interaction.
Single, dual, and quad are offered in space-saving surface-mount packages. The single version is available in the ultra-miniature 5-lead SOT-23-5 and SO-8 sur-face-mount. The dual version comes in a miniature MSOP-8 and SO-8 surface-mount. The quad is available in an SSOP-16. The SSOP-16 has the same body size as an SO-8 with 16 leads, while the MSOP- 8 has the same lead count as a SO-8 but half the size. The SOT-23-5 is even smaller at one-fourth the size of an SO-8. All are specified for $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operation. A macromodel is available for design analysis.

International Airport Industrial Park • MailingAddress: POBox11400, Tucson, AZ85734• Street Address: 6730S. TucsonBlvd., Tucson, AZ 85706•Tel: (520) 746-1111• Twx: 910-952-1111 Internet: http://www.burr-brown.can/ • EAXIine: (800) 548-6133 (US/CanadaOnly) • Cable: BRRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • InmediateProduct Info: (800) 548-6132

SPECIFICATIONS: $\mathrm{V}_{\mathbf{S}}=\mathbf{+ 5 V}$

At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ connected to $\mathrm{V}_{\mathrm{S}} / 2$, unless otherwise noted.

PARAMETER	CONDITION	OPA237UA, NA OPA2237UA, EA OPA4237UA			UNITS				
		MIN	TYP	MAX					
OFFSET VOLTAGE Input Offset Voltage vs Temperature ${ }^{(1)}$ vs Power Supply (PSRR) Channel Separation (dual and quad)	$\mathrm{V}_{\mathrm{CM}}=2.5 \mathrm{~V}$ Specified Temperature Range $\mathrm{V}_{\mathrm{S}}=+2.7 \mathrm{~V} \text { to }+36 \mathrm{~V}$		$\begin{gathered} \pm 250 \\ \pm 2 \\ 10 \\ 0.5 \end{gathered}$	$\begin{gathered} \pm 750 \\ \pm 5 \\ 30 \end{gathered}$	$\begin{gathered} \mu \mathrm{V} \\ \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ \mu \mathrm{~V} / \mathrm{V} \\ \mu \mathrm{~V} / \mathrm{V} \end{gathered}$				
INPUT BIAS CURRENT Input Bias Current ${ }^{(2)}$ Input Offset Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=2.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & -10 \\ & \pm 0.5 \end{aligned}$	$\begin{aligned} & -40 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \text { nA } \\ & \text { nA } \end{aligned}$				
NOISE Input Voltage Noise, $f=0.1$ to 10 Hz Input Voltage Noise Density, $f=1 \mathrm{kHz}$ Current Noise Density, $f=1 \mathrm{kHz}$			$\begin{gathered} 1 \\ 28 \\ 60 \end{gathered}$		$\begin{aligned} & \mu \mathrm{Vpp-p} \\ & \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ & \mathrm{fA} / \sqrt{\mathrm{Hz}} \end{aligned}$				
INPUT VOLTAGE RANGE Common-Mode Voltage Range Common-Mode Rejection	$\mathrm{V}_{\mathrm{CM}}=-0.2 \mathrm{~V}$ to 3.5 V	$\begin{gathered} -0.2 \\ 78 \end{gathered}$	86	(V+) -1.5	$\begin{gathered} \mathrm{V} \\ \mathrm{~dB} \end{gathered}$				
INPUT IMPEDANCE Differential Common-Mode			$\begin{aligned} & 5 \cdot 10^{6} \\| 4 \\ & 5 \cdot 10^{9} \\| 2 \end{aligned}$		$\begin{aligned} & \Omega \\| \mathrm{pF} \\ & \Omega \\| \mathrm{pF} \end{aligned}$				
OPEN-LOOP GAIN Open-Loop Voltage Gain	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$ to 4 V	80	88		dB				
FREQUENCY RESPONSE Gain-Bandwidth Product Slew Rate Settling Time: 0.1\% 0.01\%	$\begin{gathered} G=1 \\ G=-1,3 V \text { Step, } C_{L}=100 \mathrm{pF} \\ G=-1,3 V \text { Step, } C_{L}=100 \mathrm{pF} \end{gathered}$		1.4 0.5 11 16		MHz $\mathrm{V} / \mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{S}$				
OUTPUT Voltage Output, Positive Negative Positive Negative Positive Negative Short-Circuit Current Capacitive Load Drive (stable operation)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } \text { tround } \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } \mathrm{Ground} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \left(\mathrm{V}_{+}\right)-1 \\ 0.01 \\ \left(\mathrm{~V}_{+}\right)-1 \\ 0.12 \\ (\mathrm{~V}+)-1 \\ 0.5 \end{gathered}$	$\begin{gathered} (\mathrm{V}+)-0.75 \\ 0.001 \\ (\mathrm{~V}+)-0.75 \\ 0.04 \\ (\mathrm{~V}+)-0.75 \\ 0.35 \\ -10 /+4 \\ \text { Typical Cur } \end{gathered}$		$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~V} \\ \mathrm{~V} \\ \mathrm{~V} \\ \mathrm{~V} \\ \mathrm{~mA} \end{gathered}$				
POWER SUPPLY Specified Operating Voltage Operating Range Quiescent Current (per amplifier)		+2.7	$\begin{array}{r} +5 \\ 170 \end{array}$	$\begin{aligned} & +36 \\ & 350 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mu \mathrm{~A} \end{gathered}$				
TEMPERATURE RANGE Specified Range Operating Range Storage Thermal Resistance, θ_{JA} 5-Lead SOT-23-5 MSOP-8 Surface-Mount SSOP-16 Surface-Mount SO-8 Surface-Mount		$\begin{aligned} & -40 \\ & -55 \\ & -55 \end{aligned}$	$\begin{aligned} & 200 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & +85 \\ & +125 \\ & +125 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$				

NOTES: (1) Guaranteed by wafer-level test to 95% confidence. (2) Positive conventional current flows into the input terminals.

[^0]SPECIFICATIONS: $\mathbf{V}_{\mathbf{S}}=\mathbf{+ 2 . 7 V}$
At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+2.7 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ connected to $\mathrm{V}_{\mathrm{S}} / 2$, unless otherwise noted.

PARAMETER	CONDITION	OPA237UA, NA OPA2237UA, EA OPA4237UA			UNITS				
		MIN	TYP	MAX					
OFFSET VOLTAGE Input Offset Voltage vs Temperature ${ }^{(1)}$ vs Power Supply (PSRR) Channel Separation (dual and quad)	$V_{C M}=1 V$ Specified Temperature Range $\mathrm{V}_{\mathrm{S}}=+2.7 \mathrm{~V} \text { to }+36 \mathrm{~V}$		$\begin{gathered} \pm 250 \\ \pm 2 \\ 10 \\ 0.5 \end{gathered}$	$\begin{gathered} \pm 750 \\ \pm 5 \\ 30 \end{gathered}$	$\begin{gathered} \mu \mathrm{V} \\ \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ \mu \mathrm{~V} / \mathrm{V} \\ \mu \mathrm{~V} / \mathrm{V} \end{gathered}$				
INPUT BIAS CURRENT Input Bias Current ${ }^{(2)}$ Input Offset Current	$\begin{aligned} & V_{C M}=1 \mathrm{~V} \\ & V_{C M}=1 \mathrm{~V} \end{aligned}$		$\begin{gathered} -10 \\ \pm 0.5 \end{gathered}$	$\begin{aligned} & -40 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$				
NOISE Input Voltage Noise, $f=0.1$ to 10 Hz Input Voltage Noise Density, $f=1 \mathrm{kHz}$ Current Noise Density, $\mathrm{f}=1 \mathrm{kHz}$			$\begin{gathered} 1 \\ 28 \\ 60 \end{gathered}$		$\mu \mathrm{Vp}-\mathrm{p}$ $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{f} \mathrm{A} / \sqrt{\mathrm{Hz}}$				
INPUT VOLTAGE RANGE Common-Mode Voltage Range Common-Mode Rejection	$\mathrm{V}_{\mathrm{CM}}=-0.2 \mathrm{~V}$ to 1.2 V	$\begin{gathered} -0.2 \\ 75 \end{gathered}$	85	(V+) -1.5	$\begin{gathered} \mathrm{V} \\ \mathrm{~dB} \end{gathered}$				
INPUT IMPEDANCE Differential Common-Mode			$\begin{aligned} & 5 \cdot 10^{6} \\| 4 \\ & 5 \cdot 10^{9} \\| 2 \end{aligned}$		$\begin{aligned} & \Omega \\| \mathrm{pF} \\ & \Omega \\| \mathrm{pF} \end{aligned}$				
OPEN-LOOP GAIN Open-Loop Voltage Gain	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$ to 1.7 V	80	88		dB				
FREQUENCY RESPONSE Gain-Bandwidth Product Slew Rate Settling Time: 0.1\% 0.01\%	$\begin{gathered} G=1 \\ G=-1,1 V \text { Step, } C_{L}=100 \mathrm{pF} \\ G=-1,1 V \text { Step, } C_{L}=100 \mathrm{pF} \end{gathered}$		$\begin{gathered} 1.2 \\ 0.5 \\ 5 \\ 8 \end{gathered}$		MHz V/us $\mu \mathrm{s}$ $\mu \mathrm{S}$				
OUTPUT Voltage Output, Positive Negative Positive Negative Positive Negative Short-Circuit Current Capacitive Load Drive (stable operation)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } \text { Ground } \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } \mathrm{Ground} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } 1.35 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } 1.35 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } 1.35 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } 1.35 \mathrm{~V} \end{aligned}$	$\begin{gathered} (\mathrm{V}+)-1 \\ 0.01 \\ (\mathrm{~V}+)-1 \\ 0.06 \\ (\mathrm{~V}+)-1 \\ 0.3 \end{gathered}$	$\begin{gathered} (\mathrm{V}+)-0.75 \\ 0.001 \\ (\mathrm{~V}+)-0.75 \\ 0.02 \\ (\mathrm{~V}+)-0.75 \\ 0.2 \\ -5 /+3.5 \\ \text { Typical Cur } \\ \hline \end{gathered}$		$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~V} \\ \mathrm{~V} \\ \mathrm{~V} \\ \mathrm{~V} \\ \mathrm{~mA} \end{gathered}$				
POWER SUPPLY Specified Operating Voltage Operating Range Quiescent Current (per amplifier)		+2.7	$\begin{gathered} +2.7 \\ 160 \end{gathered}$	$\begin{aligned} & +36 \\ & 350 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mu \mathrm{~A} \end{gathered}$				
TEMPERATURE RANGE Specified Range Operating Range Storage Thermal Resistance, θ_{JA} 5-Lead SOT-23-5 MSOP-8 Surface-Mount SSOP-16 Surface-Mount SO-8 Surface-Mount		$\begin{aligned} & -40 \\ & -55 \\ & -55 \end{aligned}$	$\begin{aligned} & 200 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & +85 \\ & +125 \\ & +125 \end{aligned}$	$\begin{gathered} { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \\ \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$				

[^1]
SPECIFICATIONS: $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$

At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ connected to $\mathrm{V}_{\mathrm{S}} / 2$, unless otherwise noted.

PARAMETER	CONDITION	$\begin{aligned} & \text { OPA237UA, NA } \\ & \text { OPA2237UA, EA } \\ & \text { OPA4237UA } \end{aligned}$			UNITS				
		MIN	TYP	MAX					
OFFSET VOLTAGE Input Offset Voltage vs Temperature ${ }^{(1)}$ vs Power Supply (PSRR) Channel Separation (dual and quad)	$V_{C M}=0 \mathrm{~V}$ Specified Temperature Range $\mathrm{V}_{\mathrm{S}}= \pm 1.35 \mathrm{~V} \text { to } \pm 18 \mathrm{~V}$		$\begin{gathered} \pm 350 \\ \pm 2.5 \\ 10 \\ 0.5 \end{gathered}$	$\begin{gathered} \pm 950 \\ \pm 7 \\ 30 \end{gathered}$	$\begin{gathered} \mu \mathrm{V} \\ \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ \mu \mathrm{~V} / \mathrm{V} \\ \mu \mathrm{~V} / \mathrm{V} \end{gathered}$				
INPUT BIAS CURRENT Input Bias Current ${ }^{(2)}$ Input Offset Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & -8.5 \\ & \pm 0.5 \end{aligned}$	$\begin{aligned} & -40 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$				
NOISE Input Voltage Noise, $f=0.1$ to 10 Hz Input Voltage Noise Density, $f=1 \mathrm{kHz}$ Current Noise Density, $\mathrm{f}=1 \mathrm{kHz}$			1 28 60		$\begin{aligned} & \mu \mathrm{Vp}-\mathrm{p} \\ & \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ & \mathrm{fA} / \sqrt{\mathrm{Hz}} \end{aligned}$				
INPUT VOLTAGE RANGE Common-Mode Voltage Range Common-Mode Rejection	$\mathrm{V}_{\mathrm{CM}}=-15 \mathrm{~V}$ to 13.5 V	$\begin{gathered} (\mathrm{V}-)-0.2 \\ 80 \\ \hline \end{gathered}$	90	(V+) -1.5	$\begin{gathered} \mathrm{V} \\ \mathrm{~dB} \end{gathered}$				
INPUT IMPEDANCE Differential Common-Mode			$\begin{aligned} & 5 \cdot 10^{6} \\| 4 \\ & 5 \cdot 10^{9} \\| 2 \end{aligned}$		$\begin{aligned} & \Omega \\| \mathrm{pF} \\ & \Omega \\| \mathrm{pF} \end{aligned}$				
OPEN-LOOP GAIN Open-Loop Voltage Gain	$\mathrm{V}_{\mathrm{O}}=-14 \mathrm{~V}$ to 13.8 V	80	88		dB				
FREQUENCY RESPONSE Gain-Bandwidth Product Slew Rate Settling Time: 0.1\% 0.01\%	$\begin{gathered} G=1 \\ G=-1,10 \mathrm{~V} \text { Step, } C_{\mathrm{L}}=100 \mathrm{pF} \\ \mathrm{G}=-1,10 \mathrm{~S} \text { Step, } \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \end{gathered}$		1.5 0.5 18 21		MHz $\mathrm{V} / \mu \mathrm{s}$ $\mu \mathrm{S}$ $\mu \mathrm{S}$				
OUTPUT Voltage Output, Positive Negative Positive Negative Short-Circuit Current Capacitive Load Drive (stable operation)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	$\begin{gathered} (\mathrm{V}+)-1.2 \\ (\mathrm{~V}-)+0.5 \\ (\mathrm{~V}+)-1.2 \\ (\mathrm{~V}-)+1 \end{gathered}$	$\begin{gathered} (\mathrm{V}+)-0.9 \\ (\mathrm{~V}-)+0.3 \\ (\mathrm{~V}+)-0.9 \\ (\mathrm{~V}-)+0.85 \\ -8 /+4.5 \end{gathered}$ Typical Cur		$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~V} \\ \mathrm{~V} \\ \mathrm{~mA} \end{gathered}$				
POWER SUPPLY Specified Operating Voltage Operating Range Quiescent Current (per amplifier)		± 1.35	$\begin{gathered} \pm 15 \\ \pm 200 \end{gathered}$	$\begin{gathered} \pm 18 \\ \pm 475 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mu \mathrm{~A} \end{gathered}$				
TEMPERATURE RANGE Specified Range Operating Range Storage Thermal Resistance, θ_{JA} 5-Lead SOT-23-5 MSOP-8 Surface-Mount SSOP-16 Surface-Mount SO-8 Surface-Mount		$\begin{aligned} & -40 \\ & -55 \\ & -55 \end{aligned}$	$\begin{aligned} & 200 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & +85 \\ & +125 \\ & +125 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$				

NOTES: (1) Guaranteed by wafer-level test to 95% confidence. (2) Positive conventional current flows into the input terminals.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	36 V
Input Voltage	(V-) -0.7 V to $(\mathrm{V}+)+0.7 \mathrm{~V}$
Output Short-Circuit ${ }^{(1)}$	Continuous
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature	. $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $300^{\circ} \mathrm{C}$

NOTE: (1) Short circuit to ground, one amplifier per package.

- ELECTROSTATIC U. DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PACKAGE/ORDERING INFORMATION

PRODUCT	PACKAGE	PACKAGE DRAWING NUMBER ${ }^{(1)}$	TEMPERATURE RANGE	PACKAGE MARKING	ORDERING NUMBER ${ }^{(2)}$
Single OPA237NA OPA237UA	5-Lead SOT-23-5 SO-8 Surface-Mount	$\begin{gathered} 331 \\ " \\ 182 \end{gathered}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} \text { A37A } \\ " \\ \text { OPA237UA } \end{gathered}$	$\begin{gathered} \text { OPA237NA-250 } \\ \text { OPA237NA-3K } \\ \text { OPA237UA } \end{gathered}$
Dual OPA2237EA OPA2237UA	MSOP-8 Surface-Mount SO-8 Surface-Mount	$\begin{gathered} 337 \\ " \\ 182 \end{gathered}$	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \text { B37A } \\ " \\ \text { OPA2237UA } \end{gathered}$	$\begin{aligned} & \text { OPA2237EA-250 } \\ & \text { OPA2237EA-2500 } \\ & \text { OPA2237UA } \end{aligned}$
Quad OPA4237UA	SSOP-16 $\underset{\text { Surface-Mount }}{ }$	322	$-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$	OPA4237UA	$\begin{aligned} & \text { OPA4237UA-250 } \\ & \text { OPA4237UA-2500 } \end{aligned}$

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book. (2) Models with -250 , -2500 , and -3 K are available only in Tape and Reel in the quantity indicated (e.g., -250 indicates 250 devices per reel). Ordering 3000 pieces of "OPA237NA-3K" will get a single 3000 piece Tape and Reel. SO-8 models are available in tubes or Tape and Reel. For detailed Tape and Reel mechanical information, refer to Appendix B of Burr-Brown IC Data Book.

TYPICAL PERFORMANCE CURVES

At $T_{A}=+25^{\circ} \mathrm{C}$ and $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT)

At $T_{A}=+25^{\circ} \mathrm{C}$ and $R_{L}=10 k \Omega$, unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT)

At $T_{A}=+25^{\circ} \mathrm{C}$ and $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, unless otherwise noted.

$1 \mu \mathrm{~s} / \mathrm{div}$

$10 \mu \mathrm{~s} / \mathrm{div}$

SMALL-SIGNAL STEP RESPONSE
$\mathrm{G}=1, \mathrm{C}_{\mathrm{L}}=220 \mathrm{pF}, \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}$

$2 \mu \mathrm{~s} / \mathrm{div}$

TYPICAL PERFORMANCE CURVES (CONT)

At $T_{A}=+25^{\circ} \mathrm{C}$ and $R_{L}=10 \mathrm{k} \Omega$, unless otherwise noted.

APPLICATIONS INFORMATION

OPA237 series op amps are unity-gain stable and suitable for a wide range of general-purpose applications. Power supply pins should be bypassed with 10 nF ceramic capacitors.

OPERATING VOLTAGE

OPA237 series op amps operate from single (+2.7 V to $+36 \mathrm{~V})$ or dual $(\pm 1.35 \mathrm{~V}$ to $\pm 18 \mathrm{~V})$ supplies with excellent performance. Most behavior remains unchanged throughout the full operating voltage range. Parameters which vary significantly with operating voltage are shown in typical performance curves. Specifications are production tested with $+2.7 \mathrm{~V},+5 \mathrm{~V}$, and $\pm 15 \mathrm{~V}$ supplies.

OUTPUT CURRENT AND STABILITY

OPA237 series op amps can drive large capacitive loads. However, under certain limited output conditions any op amp may become unstable. Figure 1 shows the region where the OPA237 has a potential for instability. These load conditions are rarely encountered, especially for single supply applications. For example, take the case when a
+5 V supply with a $10 \mathrm{k} \Omega$ load to $\mathrm{V}_{\mathrm{S}} / 2$ is used. OPA237 series op amps remain stable with capacitive loads up to $4,000 \mathrm{pF}$, if sinking current and up to $10,000 \mathrm{pF}$, if sourcing current. Furthermore, in single supply applications where the load is connected to ground, the op amp is only sourcing current, and as shown in Figure 1, can drive $10,000 \mathrm{pF}$ with output currents up to 1.5 mA .

FIGURE 1. Stability-Capacitive Load vs Output Current.

NOTE: Low and high-side sensing circuits can be used independently.

FIGURE 2. Low and High-Side Battery Current Sensing.

PACKAGING INFORMATION

ORDERABLE DEVICE	STATUS(1)	PACKAGE TYPE	PACKAGE DRAWING	PINS	PACKAGE QTY
OPA2237EA/250	ACTIVE	VSSOP	DGK	8	250
OPA2237EA/2K5	ACTIVE	VSSOP	DGK	8	2500
OPA2237UA	ACTIVE	SOIC	D	8	100
OPA2237UA/2K5	ACTIVE	SOIC	D	8	2500
OPA237NA/250	ACTIVE	SOP	DBV	5	250
OPA237NA/3K	ACTIVE	SOP	DBV	5	3000
OPA237UA	ACTIVE	SOIC	D	8	100
OPA237UA/2K5	ACTIVE	SOIC	D	8	2500
OPA4237UA/250	OBSOLETE	SSOP	DBQ	16	
OPA4237UA/2K5	OBSOLETE	SSOP	DBQ	16	

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using Tl components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Amplifiers	amplifier.ti.com	Audio
Data Converters	dataconverter.ti.com	Automotive
DSP	dsp.ti.com	Broadband
Interface	interface.ti.com	Digital Control
Logic	logic.ti.com	Military
Power Mgmt	power.ti.com	Optical Networking
Microcontrollers	microcontroller.ti.com	Security
		Telephony
		Video \& Imaging
		Wireless

www.ti.com/audio www.ti.com/automotive www.ti.com/broadband www.ti.com/digitalcontrol www.ti.com/military www.ti.com/opticalnetwork www.ti.com/security www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated

[^0]: The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

[^1]: NOTES: (1) Guaranteed by wafer-level test to 95% confidence. (2) Positive conventional current flows into the input terminals.

